
EPFL / I & C

CH-1015 Lausanne

Phone: ++41 (0) 21 693 76 03

Fax: ++41 (0) 21 693 68 79

URL: http://lasecwww.epfl.ch

Solution of Midterm

1 Exhaustive Search on 3DES

1. The algorithm successively tries every possible key. It does not stop
until the last possible key is tried. Therefore, the number of iterations
is exactly equal to the number of possible keys times the number of
DES encryption for each (which is 3). Therefore, the number of DES

encryption/decryption of the algorithm is 3 · 256∗3 = 3 · 2168.

2. The random permutation C∗ is uniformly distributed among all pos-
sible permutations, and there are (264)! of them. Therefore, if c :
{0, 1}64 → {0, 1}64 is a given permutation we have Pr[C∗ = c] = 1

(264)!
.

Now, we are given two (fixed) values P, C ∈ {0, 1}64. We have

Pr[C∗(P) = C] =
∑

c

1C∗(P)=C Pr[C∗ = c]

=
1

(264)!

∑

c

1C∗(P)=C ,

where the last sum simply is the number of permutations mapping
P on C, which is the number of permutations of a set of cardinality
264 − 1. Finally,

Pr[C∗(P) = C] =
(264 − 1)!

(264)!
= 2−64 .

3. We suppose that PrK [3DESK(P) = C] = PrC∗ [C∗(P) = C] = 2−64.
Therefore the number N of keys displayed by the algorithm is

N = Pr
K

[3DESK(P) = C] × #{number of tried keys}

= 2−64 · 2168

= 2104 .

All the displayed keys (except 1) are wrong keys!

1

Algorithm 1 Exhaustive key search algorithm on 3DES, using t plain-
text/ciphertext couples

Require: t plaintext/ciphertext couples (Pi, Ci), for i = 1, . . . , t, all en-
crypted under the same key k.

1: for each possible key K = (K1, K2, K3) do

2: if Ci = 3DESK(Pi) for i = 1, . . . , t then

3: display K = (K1, K2, K3)
4: end if

5: end for

4. We consider Algorithm 1. The algorithm clearly displays k as we do
have Ci = 3DESk(Pi) for all i = 1, . . . , t. It does reduce the number of
wrong keys that are displayed because it clearly is more difficult to find
a wrong key k̃ that Ci = 3DESek

(Pi) for i = 1, . . . , t (with t > 1) than to
find a wrong key such that C = 3DESek

(P) (for only one couple). The
total number of encryption/decryption steps that have to be performed
is simply t times the number found in the first question (we suppose
that we always perform t 3DES in the if statement of the algorithm).
Therefore, this algorithm needs 3 · 2168 · t encryptions/decryptions.

5. Still supposing that PrK [3DESK(P) = C] = PrC∗ [C∗(P) = C] = 2−64,
the mean value N of wrong keys displayed by Algorithm 1 is

N = #{number of tried keys} ×
t∏

i=1

Pr
K

[3DESK(Pi) = Ci]

= 2168 · (2−64)t .

Table 1 gives the approximate number N of wrong keys that are dis-
played, in function of the number t of plaintext/ciphertext couples that
are available. According to this table, only 3 couples are necessary to
make almost sure that only the good key will be displayed.

Table 1: Mean value N of wrong keys that are displayed by Algorithm 1, in
function of t

t 1 2 3

N 2104 240 2−24

2

2 Multicollisions on Hash Functions

Preliminaries

1. According to the birthday paradox, we need approximatively 2n/2 mes-
sages to find a collision on h (i.e., a 2-collision on h) with a probability
of success of 1 − e−1/2 ≈ 0.393.

Multicollisions in Iterated Hash Functions

2. Using the birthday paradox once again, in order to find a collision on
the compression function, we need θ · 2n/2 blocks in order to find a

collision, with a probability of success of 1 − e−
θ
2

2 . As the block are
chosen in a set of cardinality 2` � 2n/2, there are enough of them to
be sure to find a collision.

3. The idea is to search for two distinct blocks B1 and B′
1 such that

f(IV, B1) = f(IV, B′
1). Calling x1 this output of the compression func-

tion, we then search for B2 and B′
2 such that f(x1, B2) = f(x1, B

′
2).

We call x2 this last value. This is represented on Figure 1. We now

B1 or B′

1 B2 or B′

2

IV f f
n

x2
x1

Figure 1: How to find a 4-collision on h0

consider the four following messages: B1 ‖ B2, B1 ‖ B′
2, B′

1 ‖ B2,
and B′

1 ‖ B′
2. Clearly, the all produce the same hash value y when

they are hashed with h0. Therefore, we have found a 4-collision on h0.
In order to do this, we had to find two 2-collision on the compression
function f , so that the overall complexity is 2 ·θ ·2n/2, for a probability
of success of (1 − e−θ2/2)2 (as we need both collision searches to be
successful).

4. Suppose we hash the four messages of the preceeding question with
h instead of h0. The only difference is that a padding has to be con-
catenated to the messages. But as this padding only depends on the
length of the message to be hashed, all four messages will have the
same padding (that we denote PAD). We represent this situation on
Figure 2.

5. We denote IV = x0 and construct the sequence xi, i = 1, . . . , t as
follows. Given xi−1, find two distinct blocks Bi and Bi−1 such that

3

B1 or B′

1 B2 or B′

2

f fIV f
n

PAD

x2
y

x1

Figure 2: How to find a 4-collision on h, based on a 4-collision on h0

f(xi−1, Bi) = f(xi−1, B
′
i). This corresponds to a 2-collision search

on f . Call xi this value. This construction is represented on Figure
3. Clearly, the 2t messages {B1, B

′
1} ‖ {B2, B

′
2} ‖ · · · ‖ {Bt, B

′
t} all

B1 or B′

1 B2 or B′

2

f
x2

f fIV f
n x1 xt−1

Bt ot B′

t

xt
y

PAD

Figure 3: Finding a 2t-collision on h

produce the same h0 hash value. As they all are of the same length (t
blocks) this implies that they also produce the same h value. We have
obtained a 2t-collision on h.

6. According to the preceeding question, we need t successful collision
searches on f . If we make θ · 2n/2 calls to f each time we look for a
collision on f , this makes a total of t · θ · 2n/2 calls to f . We need the
t collision searches to be successful, so that the overall probability of
success is (1 − e−θ2/2)t.

Multicollisions in the Random Oracle Model

7. The number of functions from M to H is #H#M. We have

Pr[H(m1) = h1] =
∑

h

1h(m1)=h1
Pr[H = h]

=
1

#H#M

∑

h

1h(m1)=h1
,

where the last sum is the number of functions mapping m1 on h1,
which is the number of functions of a set of cardinality #M− 1 to a
set of cardinality #H. Therefore

Pr[H(m1) = h1] =
#H#M−1

#H#M

=
1

#H .

4

Similarly,

Pr[H(m1) = h1, H(m2) = h2] =
∑

h

1h(m1)=h1,h(m2)=h2
Pr[H = h]

=
1

#H#M

∑

h

1h(m1)=h1,h(m2)=h2
,

where the last sum is the number of functions mapping m1 on h1 and
m2 on h2, which is the number of functions of a set of cardinality
#M− 2 to a set of cardinality #H. Therfore

Pr[H(m1) = h1, H(m2) = h2] =
1

#H2
.

This proves that Pr[H(m1) = h1, H(m2) = h2] = Pr[H(m1) = h1] Pr[H(m2) =
h2]. Therefore, the two events are independent.

8. Using the lemma with r = 2, we see that there is not s-coincidence for
any s ≥ 2 in {H1, . . . , Hq} with a probability eλ, where λ is such that
q =

√
2λ · 2n/2. Let θ =

√
2λ. In other words, we do have at least a

2-coincidence (a collision) with probability 1 − eθ2/2 in {H1, . . . , Hq},
when q = θ · 2n/2.

9. A r-collision in {m1, . . . , mq} corresponds to a r-coincidence in {H1, . . . , Hq}.
We obtain (at least) a r-coincidence with probability 1 − e−1/2 (i.e.,
λ = 1

2) when q = (r!
2)1/r2n(r−1)/r.

10. With r = 4 and n = 128, the preceeding relation gives q = 121/4296 >

296. For iterated hash function, we showed that a 4-collision can be
found with probability (1−e−θ2/2)2 ≈ 1−2 ·e−θ2/2 when q = 2 ·θ ·2n/2.
This shows that we roughly need 264 hash computations for similar
probabilities of success. This is indeed much smaller than 296.

11. We can see that the values found in the random oracle model are way
larger than the realistic ones. The random oracle model is definitively
of no help for studying this problem!

5

