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A Exhaustive Search on 3DES

We consider 3DES with three independent keys. Let P, C ∈ {0, 1}64 be a plaintext/ciphertext
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Figure 1: 3DES with three independent keys.

couple, where C = 3DESk(P ) for some unknown key k = (k1, k2, k3) (see Figure 1). We want
to recover k by an exhaustive search.

1. What is the total number of DES encryptions/decryptions of Algorithm 1?

Algorithm 1 Exhaustive key search algorithm on 3DES

Require: A plaintext/ciphertext couple (P, C)
1: for each possible key K = (K1, K2, K3) do

2: if C = 3DESK(P ) then

3: display K = (K1, K2, K3)
4: end if

5: end for
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2. Let C∗ : {0, 1}64 → {0, 1}64 denote a uniformly distributed random permutation. What
is the probability that C∗(P ) = C.

3. Assuming that 3DESK roughly behaves like C∗ when K is a uniformly distributed
random key, estimate the amount of wrong keys (i.e., different from k) displayed by
Algorithm 1.
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4. Suppose you have t distinct plaintext/ciphertext pairs, denoted (Pi, Ci) for i = 1, . . . , t,
all encrypted under the same (still unknown) key k (so that Ci = 3DESk(Pi)). Write
an algorithm similar to Algorithm 1 that reduces the number of wrong keys that are
displayed (but which does at least display k). What is the total number of DES encryp-
tions/decryptions of this algorithm?
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5. Express the mean number of wrong keys that are displayed by your algorithm in function
of t (which is the number of available plaintext/ciphertext couples). Evaluate the neces-
sary number of couples in order to be almost sure that only the good key k = (k1, k2, k3)
is displayed.
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B Multicollisions on Hash Functions

Preliminaries

In this problem, we will consider a cryptographic hash functions h : M → H, where M =
{0, 1}N and H = {0, 1}n. We generalize the notion of collision to the one of r-collision. A
r-collision on the cryptographic hash function h : M → H is a set of r distinct messages
m1, m2, . . . , mr ∈ M such that h(m1) = h(m2) = · · · = h(mr). The aim of this problem is
to study r-collisions first in the realistic case of iterated hash functions (for example hash
functions based on the Merkle-Damg̊ard construction), then in a more idealistic model, called
the Random Oracle Model (where hash functions are replaced by random functions).

1. How many messages do we need to find a 2-collision with good chances by using the
birthday paradox?

Multicollisions in Iterated Hash Functions

We consider a hash function h : M → H based on the Merkle-Damg̊ard scheme (see Figure 2).
We denote by f : {0, 1}n × {0, 1}` → {0, 1}n the compression function. Recall that in this
construction the padding is mandatory and only depends on the length of the message. We
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Figure 2: The Merkle-Damg̊ard scheme

will suppose that ` � n (e.g. ` = 512 and n = 128), i.e., the size of the message blocks is
larger than the size of the hash.
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2. Let x be an arbitrary value in {0, 1}n. Using the birthday paradox, evaluate the number
of necessary blocks in order to find two distinct blocks B and B ′ in {0, 1}` such that
f(x, B) = f(x, B′), and give the probability of success.

Let h0 : {0, 1}c×` → H be a hash function similar to h, but without padding, for which the
messages we consider have a fixed length c × `.

3. Using the preceeding question, show how to find a 4-collision on h0 with c = 2. Estimate
the success probability.
Hint: Use two (well chosen) 2-collision search on the compression function.
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4. Explain how the 4-collision found on h0 in the preceeding question leads to a 4-collision
on h.

5. Explain how the preceeding idea can be generalized in order to find a 2t-collision on h

with only t (well chosen) 2-collision searches on the compression function f .
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6. Deduce from the preceeding questions the complexity (i.e., the total number of calls to
f) of finding a 2t-collision on h together with the probability of success.

Multicollisions in the Random Oracle Model

In the Random Oracle Model, a hash function H : M → H is considered as a random function,
uniformly distributed over all possible functions from M onto H.

7. Let m1 and m2 be two distinct fixed elements of M and let h1 and h2 be two fixed
elements of H. Show that the events H(m1) = h1 and H(m2) = h2 are independent.

Consider a set of q distinct messages m1, m2, . . . , mq of M. Thanks to the preceeding ques-
tions, we can consider H(m1), H(m2), . . . , H(mq) as a set of q independent random variables
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(that we will denote H1, H2, . . . , Hq) uniformly distributed in H. We assume the following
lemma.

Lemma 1. Let H = {0, 1}n. Let {H1, . . . , Hq} be a set of q independent uniformly distributed

random variables of H, where q < 2n−8. Let us call r-coincidence an element of H which

occurs exactly r times in the sequence H1, . . . , Hq. Let λ be such that q = (λr!)1/r2n(r−1)/r.

If λ ≤ 1, then the probability that there is no s-coincidence for any s ≥ r is close to e−λ.

8. Using Lemma 1, compute the probability that there is no s-coincidence for any s ≥ 2
in the sequence H1, . . . , Hq and use it to prove the birthday paradox (when n is large
enough).

9. Compute the number q of distinct messages that are necessary to obtain an r-collision
with probability 1 − e−1/2.
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10. Show that q is lower-bounded by 296 when r = 4 and n = 128. For a similar probability
of success, show that the complexity of finding a 4-collision when h is an iterated hash
function is much smaller.

11. Compare the results of questions 6 and 9. Conclude.
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