

Family Name: .....

First Name: .....

Section: .....

# Cryptography and Security Course

## (Crypto Part)

Midterm Exam

December 10th, 2004

Duration: 1 hour 45 minutes

This document consists of 11 pages.

### Instructions

Electronic devices are not allowed.

Answers must be written on the exercises sheet.

This exam contains 2 *independent* exercises.

Answers can be either in French or English.

Questions of any kind will certainly *not* be answered. Potential errors in these sheets are part of the exam.

You have to put your full name on *each* page.

## A Exhaustive Search on 3DES

We consider 3DES with three independent keys. Let  $P, C \in \{0, 1\}^{64}$  be a plaintext/ciphertext

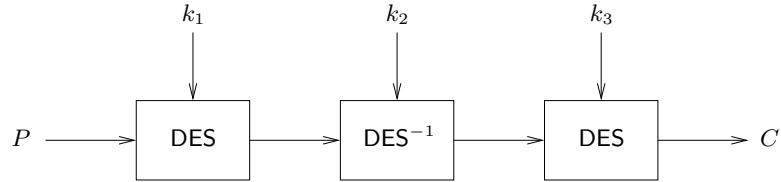


Figure 1: 3DES with three independent keys.

couple, where  $C = 3\text{DES}_k(P)$  for some unknown key  $k = (k_1, k_2, k_3)$  (see Figure 1). We want to recover  $k$  by an exhaustive search.

1. What is the total number of DES encryptions/decryptions of Algorithm 1?

---

**Algorithm 1** Exhaustive key search algorithm on 3DES

---

**Require:** A plaintext/ciphertext couple  $(P, C)$

```

1: for each possible key  $K = (K_1, K_2, K_3)$  do
2:   if  $C = 3\text{DES}_K(P)$  then
3:     display  $K = (K_1, K_2, K_3)$ 
4:   end if
5: end for
  
```

---

2. Let  $C^* : \{0, 1\}^{64} \rightarrow \{0, 1\}^{64}$  denote a uniformly distributed random permutation. What is the probability that  $C^*(P) = C$ .

3. Assuming that  $3\text{DES}_K$  roughly behaves like  $C^*$  when  $K$  is a uniformly distributed random key, estimate the amount of wrong keys (i.e., different from  $k$ ) displayed by Algorithm 1.

4. Suppose you have  $t$  distinct plaintext/ciphertext pairs, denoted  $(P_i, C_i)$  for  $i = 1, \dots, t$ , all encrypted under the same (still unknown) key  $k$  (so that  $C_i = 3\text{DES}_k(P_i)$ ). Write an algorithm similar to Algorithm 1 that reduces the number of wrong keys that are displayed (but which does at least display  $k$ ). What is the total number of DES encryptions/decryptions of this algorithm?

5. Express the mean number of wrong keys that are displayed by your algorithm in function of  $t$  (which is the number of available plaintext/ciphertext couples). Evaluate the necessary number of couples in order to be almost sure that *only* the good key  $k = (k_1, k_2, k_3)$  is displayed.

## B Multicollisions on Hash Functions

### Preliminaries

In this problem, we will consider a cryptographic hash functions  $h : \mathcal{M} \rightarrow \mathcal{H}$ , where  $\mathcal{M} = \{0, 1\}^N$  and  $\mathcal{H} = \{0, 1\}^n$ . We generalize the notion of collision to the one of  $r$ -collision. A  $r$ -collision on the cryptographic hash function  $h : \mathcal{M} \rightarrow \mathcal{H}$  is a set of  $r$  distinct messages  $m_1, m_2, \dots, m_r \in \mathcal{M}$  such that  $h(m_1) = h(m_2) = \dots = h(m_r)$ . The aim of this problem is to study  $r$ -collisions first in the realistic case of iterated hash functions (for example hash functions based on the Merkle-Damgård construction), then in a more idealistic model, called the *Random Oracle Model* (where hash functions are replaced by random functions).

1. How many messages do we need to find a 2-collision with good chances by using the birthday paradox?

### Multicollisions in Iterated Hash Functions

We consider a hash function  $h : \mathcal{M} \rightarrow \mathcal{H}$  based on the Merkle-Damgård scheme (see Figure 2). We denote by  $f : \{0, 1\}^n \times \{0, 1\}^\ell \rightarrow \{0, 1\}^n$  the compression function. Recall that in this construction the padding is mandatory and only depends on the length of the message. We

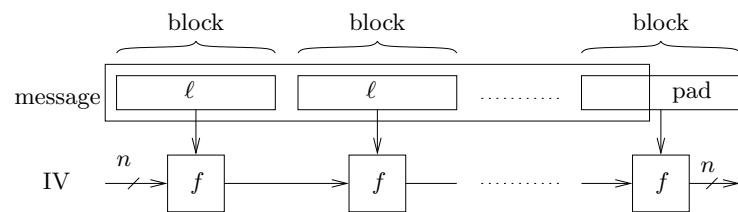


Figure 2: The Merkle-Damgård scheme

will suppose that  $\ell \gg n$  (e.g.  $\ell = 512$  and  $n = 128$ ), i.e., the size of the message blocks is larger than the size of the hash.

2. Let  $x$  be an arbitrary value in  $\{0, 1\}^n$ . Using the birthday paradox, evaluate the number of necessary blocks in order to find two distinct blocks  $B$  and  $B'$  in  $\{0, 1\}^\ell$  such that  $f(x, B) = f(x, B')$ , and give the probability of success.

Let  $h_0 : \{0, 1\}^{c \times \ell} \rightarrow \mathcal{H}$  be a hash function similar to  $h$ , but without padding, for which the messages we consider have a fixed length  $c \times \ell$ .

3. Using the preceding question, show how to find a 4-collision on  $h_0$  with  $c = 2$ . Estimate the success probability.

**Hint:** Use two (well chosen) 2-collision search on the compression function.

- 
4. Explain how the 4-collision found on  $h_0$  in the preceding question leads to a 4-collision on  $h$ .

5. Explain how the preceding idea can be generalized in order to find a  $2^t$ -collision on  $h$  with only  $t$  (well chosen) 2-collision searches on the compression function  $f$ .

6. Deduce from the preceding questions the complexity (i.e., the total number of calls to  $f$ ) of finding a  $2^t$ -collision on  $h$  together with the probability of success.

### Multicollisions in the Random Oracle Model

In the *Random Oracle Model*, a hash function  $H : \mathcal{M} \rightarrow \mathcal{H}$  is considered as a random function, uniformly distributed over all possible functions from  $\mathcal{M}$  onto  $\mathcal{H}$ .

7. Let  $m_1$  and  $m_2$  be two *distinct* fixed elements of  $\mathcal{M}$  and let  $h_1$  and  $h_2$  be two fixed elements of  $\mathcal{H}$ . Show that the events  $H(m_1) = h_1$  and  $H(m_2) = h_2$  are independent.

Consider a set of  $q$  distinct messages  $m_1, m_2, \dots, m_q$  of  $\mathcal{M}$ . Thanks to the preceding questions, we can consider  $H(m_1), H(m_2), \dots, H(m_q)$  as a set of  $q$  independent random variables

(that we will denote  $H_1, H_2, \dots, H_q$ ) uniformly distributed in  $\mathcal{H}$ . We assume the following lemma.

**Lemma 1.** *Let  $\mathcal{H} = \{0, 1\}^n$ . Let  $\{H_1, \dots, H_q\}$  be a set of  $q$  independent uniformly distributed random variables of  $\mathcal{H}$ , where  $q < 2^{n-8}$ . Let us call  $r$ -coincidence an element of  $\mathcal{H}$  which occurs exactly  $r$  times in the sequence  $H_1, \dots, H_q$ . Let  $\lambda$  be such that  $q = (\lambda r!)^{1/r} 2^{n(r-1)/r}$ . If  $\lambda \leq 1$ , then the probability that there is no  $s$ -coincidence for any  $s \geq r$  is close to  $e^{-\lambda}$ .*

8. Using Lemma 1, compute the probability that there is no  $s$ -coincidence for any  $s \geq 2$  in the sequence  $H_1, \dots, H_q$  and use it to prove the birthday paradox (when  $n$  is large enough).

9. Compute the number  $q$  of distinct messages that are necessary to obtain an  $r$ -collision with probability  $1 - e^{-1/2}$ .

10. Show that  $q$  is lower-bounded by  $2^{96}$  when  $r = 4$  and  $n = 128$ . For a similar probability of success, show that the complexity of finding a 4-collision when  $h$  is an iterated hash function is much smaller.

11. Compare the results of questions 6 and 9. Conclude.