
 

 Buttu Andreea 

1/3 

1/3 

REGLE DE TRANSFORMATION STD-CANONIQUE 

 0  es   variabl          0  variables

 s.c                         s.c

max                 max       

standard              canonique

≥≥

=≤

⇔

 

3xx                         

:  variablede changement                       

3xx ,x 3x:EX

convexenon  x tcas(
x  ts.c

   tmin

x  ts.c

    tmin
xmin

0    t

xc   ts.c

tz   min

}xc,...,cmax{zmin

bx

bx
bx

bs-ax  bax  bsaxbax

0)(s sécart d'  var.des rajoute :équation   inéquation

bax-

bax
 bax

1-par  multiplier :

))x(fmax()x(fmin(

)0x,x(xxx:x

i
'
i

iiii

in1

+=′

•

≤+−ℜ∈•⇔−≥





≥
≤

⇔






=
⇔









≥

≥

=

⇔=





−≥

≤
⇔≤

=⇔≥=+⇔≤

≥→





−≤

≤
⇔=

≥→≤

−−=

≥−=ℜ∈

−+

−+−+

 

Tableau  initial admissible ⊕≥ 0sont  ib les si admissible  

Dégénéré : un zéro dans les ib  

Tableau optimal : tous les ib  et tous les coûts positifs 

Primal non borné : une colonne entièrement négative 

PHASE I – PRIMAL (on peut aussi rajouter un second membre(b) nul) 

Données : Un tableau non admissible. Résultat : Un tableau admissible ou  
un certificat d'absence de solutions  admissibles. 
(1) Construire le PL auxiliaire et un tableau initial admissible : 

� Introduire la variable auxiliaire 0x  dans toutes les contraintes  

vérifiant 0<ib , avec comme valeur = -1. 

� Ajouter la fonction objectif auxiliaire (à maximiser) 0
' xz −= . 

� Faire entrer 0x  dans la base en pivotant sur 0jα  où 

j = min {i | ib  = min { 0| <kk bb } : 

(2) Résoudre le PL auxiliaire à l'aide de la phase II de l'algorithme du 
simplexe et en utilisant la règle de Bland. 

� Si 'z  = 0 à l'optimum, supprimer les colonnes de 0x  et de 'z  

 et la ligne de 'z . Le tableau restant est admissible pour le problème de  
départ.  

� Si 'z  < 0 à l'optimum, le problème de départ n'admet pas de  
solutions admissibles. 
PHASE I – DUAL 

Rajouter une dernière ligne au tableau = 0 partout sauf pour z=1.Ce tableau 
est dual-admissible et on peut appliquer la phase II-dual(avec la règle de  
Bland) 
PHASE II – PRIMAL 

Données : Un tableau admissible. Résultat : Un tableau optimal ou non  
borné. 

(1) Choix d'une colonne (variable) entrante : Choisir une colonne hors  

base r ayant un coût marginal négatif }0|{ <−∈∈ kNkr γ  

S'il n'existe pas de colonne entrante : STOP le tableau courant est optimal. 
(2) Choix d'une colonne (variable) sortante : Choisir une ligne j  

minimisant  les quotients caractéristique  

}}0|min{|},...,1{{ >=∈∈ ir
ir

i

kr

kmkj α
α

β

α

β
 S'il n'existe pas de colonne  

sortante : STOP le tableau courant est non  borné. 

(3) Mise à jour de la base et du tableau : pivoter autour de jrα  et retourner 

en (1). 
PHASE II – DUAL 

Données : Un tableau dual-admissible. Résultat : Un tableau optimal ou un  
certificat d'absence de solutions admissibles. 

(1) Choix d'une variable sortante : Choisir une ligne i avec 0<iβ , la  

variable basique jx  avec )(ij σ=  quitte la base. S'il n'existe pas de  

variable sortante : STOP le tableau courant est optimal. 

(2) Choix d'une variable entrante : Choisir une colonne hors base r maximisant  

les quotients caractéristiques duaux }}0|max{|Nk{r ij
ij

j

ik

k <α
α

γ−
=

α

γ−
∈∈  

S'il n'existe pas de variable entrante : STOP le dual est non borné et le primal sans 
solutions admissibles. 

(3) Mise à jour de la base et du tableau : Pivoter autour de irα  et retourner en (1). 

PROGRAMME DUAL D’UN PL CANONIQUE 
A tout PL canonique 
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On associe un programme dual 

0y        
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THEOREME DE DUALITE FAIBLE 
Soit x une solution admissible d’un PL canonique et y une solution admissible de  

son dual, alors ybcx ≤  

THEOREME DE DUALITE FORTE 
Si un programme linéaire standard possède une solution optimale x de valeur z,  
alors son dual possède aussi une solution optimale y. De plus, z=w 

ECART COMPLEMENTAIRES 0EXDY&0DXEY ==  

ALGO. DUAL – TABLEAUX PARTICULIERS 

Dual Admissible ⊕  sur la dernière ligne 

  
LA DUALITE 

 
REGLE DE BLAND : Lorsque plusieurs candidats sont susceptibles d'entrer ou de 

sortir de la base, les départager en choisissant toujours la variable rx  ayant le plus 

petit index r. 
AJOUT DE CONTRAINTES : écrire la contrainte sous forme standard, écrire 
l’expression à partir du tableau optimal et l’introduire dans le tableau optimal et le 
rendre optimal. 
SENSIBLITE DU MEMBRE DE DROITE :                                       
 
 
 
 
 
 
 
 
SENSIBILITE DE LA FONCTION OBJECTIF C :   
La base reste optimale tant 

que 0'1'' ≥−=− −
NBN cNBcγ  

Pour variable hors base : 

]jc,('
jcj jγ−−∞∈′⇔γ−≤δ  

              Nx                Bx     z  

NB 1−  I  0  bB 1−  

NB cNBc −−1  0  1  bBcB
1−  

 

LES GRAPHES NON ORIENTES V(|V|=n) (|E|=m) )(: 2 VPE →Ψ  fct d’incidence. 

Matrice d’adjacence : sommets-
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Matrice d’incidence : sommets-

arêtes mn×  
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LES GRAPHES ORIENTES V(|V|=n) (|E|=m) VVE ×→Ψ :  fct d’incidence. 

Matrice d’adjacence :  

sommets-sommets nn×  
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Matrice d’incidence : 

 sommets-arcs mn×  
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DEFINITIONS ET PROPRIETES  

la base reste optimale 

pour β−≥−δ 1
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Une arête (un arc) dont les extrémités sont confondues est une boucle. Un 
graphe simple est un graphe sans boucle ni arêtes (arcs) multiples. Graphe 
désignera un graphe simple fini. Si des boucles ou des arêtes (arcs) 
multiples sont autorisées, on parlera de graphe général ou de multigraphe. 
Remarque : Deux arcs de sens opposés ne sont pas des arcs multiples ! 
Le rang de la matrice d'incidence sommets-arcs d'un digraphe sur n 
sommets est inférieur ou égal à n-1. 

G’ est un graphe partiel de G si G’ = (V;E’) avec EE ⊆' . G’ est un sous-

graphe de G induit par W si G’ = (W;E(W)) où 
VW ⊆  et E(W) est l'ensemble des arêtes (arcs) ayant leurs deux extrémités 

dans W. 
DEGRES 
Soit G un multigraphe, le degré du sommet v, noté deg(v), est égal au 
nombre d'arêtes (d'arcs) incidentes à v. 
Remarque. Si un sommet possède une ou plusieurs boucles, chacune 
apporte une contribution de 2 dans le calcul du degré de ce sommet. Soit G 
un multigraphe orienté, le degré extérieur du sommet v, noté 

)(deg v+ , est égal au nombre d'arcs issus de v. Similairement, le degré 

intérieur du sommet v, noté )(deg v− , est égal au nombre d'arcs se 

terminant en v. 
Propriété : Dans tout graphe, la somme des degrés est un nombre pair. 
CHAINES ET CYCLES 
Une chaîne est une suite alternée de sommets et d'arêtes 
C = (u0; f1; u1; f2; u2; : : : ; uk_1; fk; uk); 

où  i}u,{ufet  , i1-ii ∀=∀∈∀∈ iEfiVu ii  Un cycle est une chaîne des les deux 

extrémités sont confondues. Une chaîne (un cycle) est élémentaire si 
chaque sommet y apparaît au plus une fois. Une chaîne (un cycle) est 
simple si chaque arête y apparaît au plus une fois. La longueur d'une 
chaîne (d'un cycle) est le nombre d'arêtes de la 
chaîne (du cycle). 
CHEMINS ET CIRCUITS 
Un chemin est une suite alternée de sommets et d'arcs 
C = (u0; f1; u1; f2; u2; : : : ; uk_1; fk; uk); 

où  i}u,{ufet  , i1-ii ∀=∀∈∀∈ iEfiVu ii Un circuit est un chemin dont les deux 

extrémités sont confondues. 
CONNEXITE 

Soit G = (V;E; Ψ ) un multigraphe (non orienté). On définit sur V une relation 
de connexité C par 

jji vCvv =⇔ isoit v soit il existe une chaîne entre vi et vj. 

C est une relation d'équivalence : réflexive, symétrique, transitive. 
CONNEXITE FORTE 

i và  dechemin un  ET

 à  dechemin un  existe il isoit v

jv

jvivsoitjv
jiCFv

=
⇔

 

NOMBRE CYCLOMATIQUE 
Soit G un multigraphe avec n sommets, m arêtes et p composantes 
connexes. Le nombre cyclomatique v(G) de G est v(G) = m _ n + p. Pour 

tout multigraphe G, on a 0)( ≥Gv . De plus, v(G) = 0 si et seulement si G est 

sans cycle. 
THEOREMES 

Soit G = (V;E; Ψ ) un multigraphe à n sommets. Les affir- 
mations suivantes sont équivalentes. (a) G est un arbre. 
(b) G est sans cycle et connexe. (c) G est sans cycle et comporte n _ 1 
arêtes. (d) G est connexe et comporte n _ 1 arêtes. (e) G est sans boucle et 
chaque paire de sommets est reliée par une et une seule chaîne simple. 

Tout arbre fini sur 2≥n  sommets possède au moins deux 

sommets pendants ou feuilles, c'est-à-dire deux sommets incidents à une 
seule arête. 

Dans tout arbre fini sur 2≥n  sommets, on peut choisir 

arbitrairement un sommet v1 et trouver une numérotation v2,…. ,vn des 
sommets restants ainsi qu'une numérotation e2,…,en des arêtes telles que, 

pour tout 2≥i , l'arête ie  ait pour extrémités le sommet iv  et un sommet 

ijv j <  avec  

La matrice d'incidence sommets-arêtes d'un arbre sur n 
sommets a rang n-1 
KRUSKAL 
Trier, classer, etc… 
PRIM 
De voisins en voisins, prendre l’arete la plus petite. 
CHAINE DE SECTION OPTIMALE 
L'inf-section de C est définie comme la valeur minimale des poids des 
arêtes de C. La sup-section de C est définie comme la valeur maximale des 
poids des arêtes de C. Pour deux sommets i et j de G donnés, le problème 
de l'inf-section maximale consiste à déterminer la chaîne d'inf-section 
maximale reliant ces deux sommets. Réciproquement, le problème de la 
sup-section minimale consiste à déterminer une chaîne de sup-section 
minimale reliant ces deux sommets. 

L'arbre recouvrant de poids maximum fournit des chaînes d'inf-section maximale 
entre toutes paires de sommets d'un graphe. L'arbre recouvrant de poids minimum 
fournit des chaînes de sup-section minimale entre toutes paires de sommets d'un 
graphe. chaîne de section 
maximale=chaîne d'inf-section maximale ;chaîne de section minimale=chaîne de sup-
section minimale. 
PLUS COURTS CHEMINS – BELLMAN 
Si C est un plus court chemin de s à t et si u appartient à ce plus court chemin, alors 
les sous-chemins de s à u et de u à t sont également des plus courts chemins. 

Si nj λλ .... vérifient Ej)(i,   ∈∀+≤ ijij cλλ et si C est un chemin de s à t pour lequel 

Cj)(i,   ∈∀+= ijij cλλ  

alors C est un plus court chemin de s à t. 

Algorithme : (1) On part d'un vecteur λ  initial défini par ∞== iet  0 λλs  pour tout 

si ≠ . 

(2) On tient à jour une liste de candidats L contenant initialement le 
sommet s. 
(3) Tant que L est non vide, on retire un sommet de L, disons i, et, pour chacun des 

successeurs j de i, on teste si ijij c+> λλ . Si tel est le cas, on pose ijij c+= λλ  et 

on introduit j dans L (à moins qu'il n'y soit déjà). 
Théorème :on retire de L le sommet d’étiquette minimale. 
DIJKSTRA 
Résultat :plus court chemin de s à i et le prédécesseur immédiat p(i) du somment i 
dans un tel chemin 

(1) VTiipsiis =∀=≠∞∀== ,NULL)(,,0 λλ  

(2) Tant que φ≠T  faire 

(2.1) Soit i le sommet de T de plus petite étiquette iλ  (départager arbitrairement en 

cas d'égalité). 

(2.2) Si un tel sommet n'existe pas ( Tjj ∈∞∀=λ ) : STOP, les sommets encore dans 

T ne sont pas atteignables depuis s. 
(2.3) Sinon, retirer i de T et pour tout successeur j de i encore dans T tester si 

ijij c+> λλ  auquel cas poser ijij c+= λλ  et ijp =)( . 

Théorème : le graphe G = (V;E) est sans circuit si et seulement si on peut attribuer à 
chaque sommet i 2 V un nombre r(i), appelé le rang de i, tel que pour tout arc (i; j) ∈  
E on ait r(i) < r(j). 
ALGORITHME DU RANG 
Données : Un graphe orienté G = (V;E) sans circuit. 
Résultat : Pour tout sommet i ∈  V , un rang r(i) minimal. 
(1) k = 1, W = V 

(2) Tant que φ≠W  faire 

(2.1) Soit X l'ensemble des sommets sans prédécesseur du sous-graphe 

))(,( WEWGW = . 

(2.2) Poser r(i) = k pour tout i ∈  X. 
(2.3) Poser W = W \ X et k = k + 1. 
TRI TOPOLOGIQUE 
Données : Un graphe orienté G = (V;E) sans circuit,|V| = n. 

Résultat : Une numérotation },...,1{: nVv →  des sommets de G 

compatible avec le rang. 
(1) k = 1, W = V 

(2) Tant que φ≠W  faire 

(2.1) Soit i un sommet sans prédécesseur du sous-graphe 

))(,( WEWGW = . 

(2.2) Poser WWkiv == ,)( \{i} et k=k+1. 

PLUS COURTS CHEMINS DANS LES RESEAUX SANS CIRCUITS 
Pour calculer un plus court chemin dans un réseau sans circuit, il suffit de numéroter 
les sommets de manière compatible avec le rang (en effectuant un tri topologique du 
graphe) et de tester la condition d'optimalité en 
parcourant les sommets dans l'ordre croissant de leur numéro. Le plus souvent cet 
algorithme s'applique dans des réseaux possédant un seul sommet sans 
prédécesseur, le problème étant de trouver un plus court 
chemin de ce sommet à tous les autres. Dans un tel cas, après avoir trié 

topologiquement le graphe, on pose 01 =λ  

et pour k de 2 à n on calcul )}(Pr|min{ kedjc jkjk ∈+= λλ  

APPLICATION A LA GESTION DE PROJET :LA METHODE DU CHEMIN CRITIQUE 
Déterminer la durée minimale de réalisation d'un projet revient à calculer  un plus long 
chemin entre les sommets α et ω  du graphe associé. 

ALGORITHME DU CHEMIN CRITIQUE 
Données : Un réseau R = (V;E; c) associé à un projet et dont les sommets ont été 
numérotés de manière compatible avec le rang (le sommet α  a numéro 1 et le 

sommet ω  le numéro n). 

Résultat : La durée minimale D du projet ainsi que, pour chaque tâche i, la date iδ  de 

début au plus tôt de la tâche et la date iϕ  de début au plus tard de cette même 

tâche. 
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(1) Récurrence en avançant dans le projet (calcul des dates de début au 

plus tôt) 01 =δ Pour k = 2 à n poser 

}{}{ maxmax
)(Pr)(Pr

jj
kedj

jkj
kedj

k dc +=+=
∈∈

δδδ  

(2) Récurrence en reculant dans le projet (calcul des dates de début au plus 

tard) nnnD δϕδ == , Pour k = n-1 à 1 poser 

}{}{ minmin
)()(

kj
kSuccj

kjj
kSuccj

k dc −=−=
∈∈

ϕϕϕ . 

 

TERMINOLOGIE 

Une tâche i est critique si ii ϕδ = . Tout retard dans l'exécution d'une tâche critique se 

répercute en un accroissement de la durée totale de réalisation du projet. 
Un chemin critique est un chemin du sommet α  (début des travaux) au sommet ω  

(fin des travaux) composé uniquement de tâches critiques. La longueur d'un chemin 
critique correspond à la durée minimale nécessaire 
à la réalisation du projet. 

 

TRANSBORDEMENT 

s : source  0bi <  

p : puits    0bi >  

t : transbordement  0b =  

A. Résolution du  problème auxiliaire (PHASE I) 

1. Construction de réseau auxiliaire 

Source « centrale » : k 

             Rajouter 1c ),k,s( sk =  si n’existe pas déjà 

             Rajouter 1c ),p,k( kp =  si n’existe pas déjà 

             Les autres 0cij =  

2. Construction de l’arbre solution initiale admissible 

couvrant}} arbrel' rendrepour  airesupplément arc{

}puitssommet  j|)j,k{(}sourcesommet  i|)k,i{(

∪

∪
 

3. Calcul des solutions primales et duales � nouveau graphe 

• Solutions primales :  

noeudenlever 

bbb

j) de(sortant  bx

j)sur (incident  bx

pendant noeudun  prendre

jii

jji

jij

+=

−=

=

 

• Solutions duales : 

 j) desortant  - ; jsur incident  : (   ijciyjy

0iy arbitraire Viun pour 

+±=

=∈
 

4. Tant que  0zaux ≠  :  

• Choisir arc entrant : 
Dans l’ordre lexicographique, trouver le premier arc qui viole la 

contrainte de dualité : 

 ijij cyy ≤−  

S’il n’en existe pas, STOP, les solutions actuelles sont optimales.  

• Choisir arc sortant : 
Créer cycle avec arc entrant : 

 

}-Cl)(k,|klmin{x                  

:par  déterminé serrasortant  Arc

entrant  arcqu' opposé sens le dans dirigés arcs ,C

entrant arcqu' sens même le dans dirigés arcs ,C
C
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S’il n’en existe pas, STOP, le réseau possède un circuit à coût 

négatif et le problème n’a pas d’optimum fini. 

 

• Mettre à jour les variables : 

� Primale : 
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� Duales : 

uvuv

v

v

u

cyy                                          

-yy :changent  Ty les Seuls

 vnoeud lecontenant  arbre T

u. noeud lecontenant  arbre T

sortant. arcl'nt mporairemeRetirer te entrant. arcl' v)(u,Soit 

′−−=ε
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A. Résolution du  problème départ (PHASE II) 

1. Retirer les arcs artificiels et rétablir le coût unitaire initial des 

arcs. 

2. Calculer les solutions duales 

  Attention : considérer les arcs de l’arbre solution 

3. Itérer 

• Recherche arc entrant : 
S’il n’en existe pas, STOP, les solutions actuelles sont optimales. 

• Recherche arc sortant : 
S’il n’en existe pas, STOP, le réseau possède un circuit à coût 

négatif et le problème n’a pas d’optimum fini. 

• Mis à jour des variables. 

 

blablabla 

 

 

 

 

 

 

 

 

 


